Course Code	19ME4602B	Year	III	Semester	II	
Course Category:	Program Elective	Branch	ME	Course Type	Theory	
Credits:	3	L - T - P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

DESIGN OF TRANSMISSION SYSTEMS

Course Outcomes				
Upon successful completion of the course, the student will be able to				
CO1	Analyze and Design shafts, keys and couplings under loading conditions	L3		
CO2	Select suitable belt drives and associated elements from manufacturers	L3		
	catalogues under given loading conditions			
CO3	Select suitable bearings and its constituents from manufacturers catalogues	L4		
	under given loading conditions			
CO4	Analyze friction clutches and power screws subjected to loading conditions	L3		
CO5	Apply the design concepts to estimate the size of the bevel and worm gears	L4		

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes													
	Stre	ngth of	f corre	lations	s (3: H	ligh, 2	: Mod	erate,	1: Lov	v)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1									3	1
CO2	3	3	1	1									3	1
CO3	3	3	1	1									3	1
CO4	3	3	1	1									3	1
CO5	3	3	1	1									3	1

Course Content		
		CO s
UNIT-1	Shafts: Design of solid and hollow shafts for strength – For Bending,	CO1
	Torsion, Combined bending and torsion and combined bending, torsion	
	and axial loads	
	Keys & Couplings: Types of keys, Design of square and flat keys,	
	Rigid couplings – Muff, split muff and Flange couplings, Flexible	
	coupling- Bushed-Pin Flexible coupling.	
UNIT-2	Belt and Chain drives: Belts and their construction. Flat belts versus	CO 2
	V- belts. Open and cross belt arrangements. Ratio of tensions,	
	centrifugal tension, effect of centrifugal tension. Design of belts. Chain	
	Drives: Roller chains, geometric relationships, polygonal effect of	
	chain, power rating and design of chain drives.	
UNIT-3	Sliding Contact Bearings: Types of Bearings, bearing materials,	CO3
	Lubrication, types of lubricants, properties of lubricants, Lubrication	
	modes, bearing modulus, McKee's equations, design of journal	
	bearing. Bearing Failures.	

	Rolling Contact Bearings: Static and dynamic load capacity, Stribeck's						
	Equation, equivalent bearing load, load-life relationships, load factor,						
	selection of bearings from manufacturer's catalogue.						
UNIT-4	Friction Clutches: Torque transmitting capacity of disc and	CO4					
	centrifugal clutches. Uniform wear theory and uniform pressure						
	theory.						
	Power Screws: Forms of threads – Torque required to lift and lower						
	the load, self-locking screw, efficiency, collar friction, Design of screw						
	and Nut, Design of Screw Jack.						
UNIT-5	BEVEL AND WORM GEARS: Straight bevel gear - tooth	CO5					
	terminology, tooth forces and stresses, equivalent number of teeth.						
	Estimating the dimensions of pair of straight bevel gears. Worm						
	Gear: terminology, Merits and demerits. Design procedure and problems						
	based on strength and wear considerations.						

Learning Resources						
Text	1. V.B. Bhandari, Design of Machine Elements, 3/e, Tata McGraw Hill, 2010.					
Books:						
Reference	1. 1. J.E. Shigley, Mechanical Engineering Design, 2/e, Tata McGraw Hill,					
Books:	1986.					
	2. R.L. Norton, Machine Design an Integrated approach, 2/e, Pearson					
	Education, 2004.					
	M.F.Spotts and T.E.Shoup, Design of Machine Elements, 3/e, Prentice Hall					
	(Pearson education), 2013.					
Е-	1.http://ecoursesonline.iasri.res.in/course/view.php?id=521					
Resources	2.https://nptel.ac.in/courses/112/105/112105124/					
& other	3. https://nptel.ac.in/courses/112/105/112105125/					
digital						
Material:						